3D Line Segments Extraction from Semi-dense SLAM

نویسندگان

  • Shida He
  • Xuebin Qin
  • Zichen Vincent Zhang
  • Martin Jägersand
چکیده

Despite much interest in Simultaneous Localization and Mapping (SLAM), there is a lack of efficient methods for representing and processing their large scale point clouds. In this paper, we propose to simplify the point clouds generated by the semi-dense SLAM using three-dimensional (3D) line segments. Specifically, we present a novel incremental approach for 3D line segments extraction. This approach reduces a 3D line segment fitting problem into two two-dimensional (2D) line segment fitting problems, which take advantage of both image edge segments and depth maps. We first detect edge segments, which are one-pixel-width pixel chains from keyframes. We then search 3D line segments of each keyframe along their detected edge pixel chains by minimizing the fitting error on both image plane and depth plane. By incrementally clustering the detected line segments, we show that the resulting 3D representation for the scene achieves a good balance between compactness and completeness. Our experimental results show that the 3D line segments generated by our method are highly accurate in terms of the location of their end points. Additionally, we also demonstrate that these line segments greatly improve the quality of 3D surface reconstruction compared to a feature point based baseline.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incremental 3D Line Segments Extraction from Semi-dense SLAM

Despite much interest in Simultaneous Localization and Mapping (SLAM), there is a lack of efficient methods for representing and processing their large scale point clouds. In this paper, we propose to simplify the point clouds generated by the semi-dense SLAM using three-dimensional (3D) line segments. Specifically, we present a novel incremental approach for 3D line segments extraction. This a...

متن کامل

Pop-up SLAM: a Semantic Monocular Plane SLAM for Low-texture Environments

Existing simultaneous localization and mapping (SLAM) algorithm is not robust in challenging low-texture environments because of few salient features. The resulting sparse or semi-dense map also conveys little information for motion planning. Though some work utilize plane or scene layout for dense map regularization, they require decent state estimation from other sources. In this paper, we pr...

متن کامل

Real-Time Model-Based SLAM Using Line Segments

Existing monocular vision-based SLAM systems favour interest point features as landmarks, but these are easily occluded and can only be reliably matched over a narrow range of viewpoints. Line segments offer an interesting alternative, as line matching is more stable with respect to viewpoint changes and lines are robust to partial occlusion. In this paper we present a model-based SLAM system t...

متن کامل

Line-based SLAM Considering Directional Distribution of Line Features in an Urban Environment

In this paper, we propose a line-based SLAM from an image sequence captured by a vehicle in consideration with the directional distribution of line features that detected in an urban environments. The proposed SLAM is based on line segments detected from objects in an urban environment, for example, road markings and buildings, that are too conspicuous to be detected. We use additional constrai...

متن کامل

Fast Line Description for Line-based SLAM

Simultaneous localization and mapping (SLAM) is a technique to simultaneously perform mapping of environments and localization of a camera in real-time. Most existing monocular vision based SLAM techniques use point features as landmarks. However, images of artificial environments with little texture often contain many line segments, whereas few point features can be localized in such a scene. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1708.03275  شماره 

صفحات  -

تاریخ انتشار 2017